Suppose your responsibility is testing electric vehicle (EV) batteries. In that case, you are contending with increasing production volumes to address market growth and higher kilowatt-hour capacity battery packs to extend driving distance. You also must have test capability for testing higher voltage battery packs, enabling vehicles to use smaller gauge wiring for weight reduction.
Suppose you also must test battery packs for off-road vehicles. In that case, you have the added challenge of verifying that battery packs can safely withstand the additional mechanical stresses due to operation on rough terrain and exposure to heavy loads.
Battery test systems need to accommodate battery voltages evolving from 400 V to 800 V and higher. In addition, battery capacities are increasing to over 100 kWh. Furthermore, off-road battery packs require vibration and shock testing. EA Elektro-Automatik (EA) has the DC programmable power solutions for all these requirements. We will recommend test requirements and introduce test instruments and systems to address all the challenges of off-road EV battery pack testing.
Determining that batteries meet their specifications for deployment in off-road vehicles includes tests that all EV battery packs should pass and some tests specific to off-road vehicles. These tests are:
EA offers lab-to-field solutions for battery testing, ranging from individual DC programmable power instruments for R&D and quality control and complete turnkey systems for production testing. EA addresses the challenges of battery testing with three solutions:
Our line of PSB bidirectional power supplies can both source and absorb power to combine the functions of a power supply and a load in one instrument. PSB power supplies are high power density instruments that can deliver or absorb up to 30 kW. Models can have voltages up to 2000 V and current of as much as 1000 A to test battery cells and a wide range of EV battery packs.
EA-PSB power supplies have an autoranging output characteristic, allowing delivery (or absorption) of maximum power from the maximum rated output voltage down to 1/3 of the rated output voltage. A conventional supply with a rectangular output characteristic can only deliver full power at its rated voltage. To deliver the equivalent amount of current as an EA-PSB supply, the conventional power supply would need to have three times the power of the EA-PSB supply. Thus, EA-PSB supplies can deliver more power in less space and at a lower cost than conventional power supplies.
EA-PSB power supplies also have a built-in arbitrary waveform generator that can apply a load profile to simulate driving and usage conditions. With a 500 µs slew rate, PSB supplies can generate narrow current pulses for battery pack pulse testing.
Testing EV battery packs consumes a substantial amount of energy. EA-PSB power supplies can return power to the AC grid with an industry-high 96.5% efficiency. The use of these regenerative power supplies can provide significant annual utility savings.
EA-PSB bidirectional power supplies provide more performance, more power, and higher efficiency in less space with greater cost savings. Integrating a load and an arbitrary waveform generator combines the functionality of three instruments into a single physical instrument. The EA-PSB power supply is a superior battery test instrument.
The EA-BT 20000 can test up to three battery cells or three battery packs simultaneously. Models can have 30 kW that support power up to 10 kW/channel with voltage up to 920 V or current up to 600 A/channel. The EA-BT 20000 performs testing, battery simulation, and battery cycling. In addition, this instrument includes:
For a complete turnkey battery test system that includes temperature cycling, we have the EA-BTS 10300. This system provides as much as 300 kW in a 19-inch wide test rack. Maximum voltage is 2000 V or maximum current can be 2400 A/rack. The racks can be paralleled to have a total capacity of 3.84 MW. The EA-BTS 10300 provides:
The high voltage and high current capacity of a test rack combined with the ability to easily add test racks ensures that the EA-BTS 10300 can meet current and future test requirements.
Whether you need a test system for R&D, a system for quality control, or a complete high-volume production system, EA can serve your requirements. You can design your own system based on EA-PSB bidirectional power supplies or EA-BT 20000 Triple Battery Testers. Alternatively, you can meet current and future production needs with the EA-BTS 10300 Battery Cycler and Test System. All these options allow for the interface and control of a vibration station. The EA-BTS 10300 system can expand to test new, higher-capacity batteries and more batteries for higher demand requirements. With the ability to control a vibration station, EA solutions can address the challenges of ensuring robust, reliable batteries for off-road EVs.